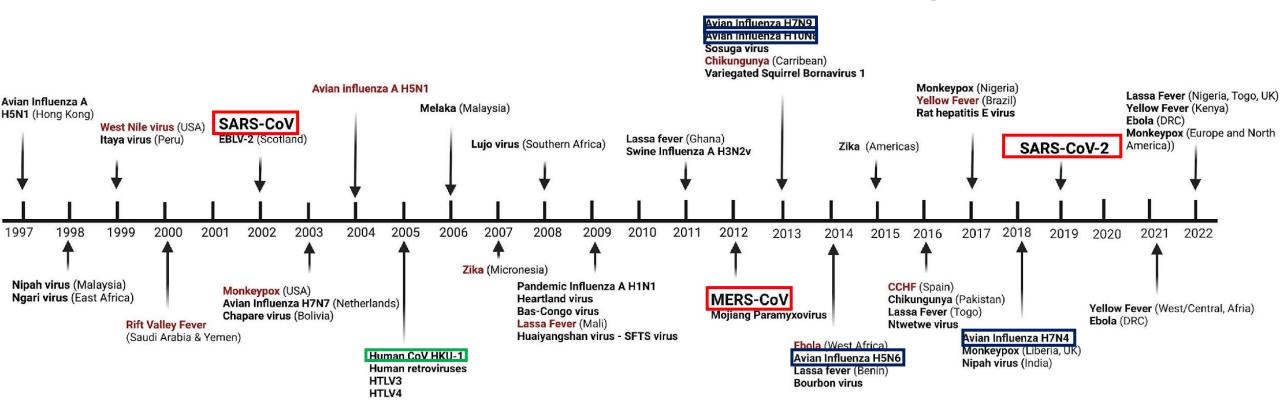


Recent pandemics and informed predictions

8:40 am

Prof Stanley Perlman MD, PhD

Department of Microbiology and Immunology Department of Pediatrics University of Iowa


Recent pandemics and informed predictions

Stanley Perlman, M.D., Ph.D. Department of Microbiology and Immunology Department of Pediatrics University of Iowa

Recent pandemics #1

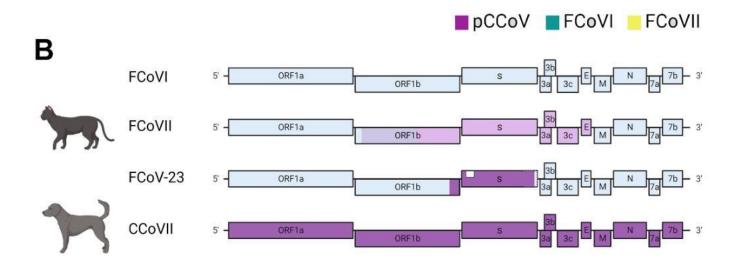
- 1918 influenza pandemic
- 2019 COVID-19
- Ebola outbreak/epidemics
- HIV pandemic
- Two of these were caused by respiratory viruses while two were not transmitted via a respiratory route.
 - None of these viral infections were easily contained, although there was most success with Ebola.
- All of these were zoonotic.

Recent pandemics epidemics, outbreaks and identification of human pathogens

SARS-CoV, MERS-CoV, SARS-CoV-2 were new to humans HKU-1 was not new in 2005, but was newly identified.

Keusch et al, PNAS, 2022

Prediction #1-Next pandemic virus will be a zoonotic respiratory virus, with a caveat.


- Humans will be immunologically naïve to the virus.
- Virus needs to be able to efficiently transmit from human to human.
 - This was key difference in between SARS-CoV and SARS-CoV-2 since both use ACE2 as a receptor but only SARS-CoV-2 efficiently infected the upper airway (or was able to transmit from the upper airway).
- The caveat is that there may be surprises still.
 - Two new feline/canine coronaviruses were recently identified, with novel features.

Novel canine/feline coronaviruses

- One was identified in children in Malaysia with respiratory illness
 - Contained genetic information from canine, feline and swine CoV.
 - These viruses all use the same receptor and can fairly easily cross species.
 - Never found in Nature
 - No evidence for interhuman transmission
- Second novel CoV was identified in cats in Cyprus.
 - Feline CoV is enteric pathogen that is easily transmitted from cat to cat.
 - Occasionally, mutations occur in a persistently infected host which results in a change in cellular tropism from epithelial cells to macrophages ("feline infectious peritonitis virus" FIPV).
 - This version of FIPV is highly lethal, but does not transmit from cat to cat.

Novel canine/feline coronaviruses #2

 Recently, an outbreak of FIPV occurred on Cyprus. This is not supposed to occur because FIPV is sporadic.

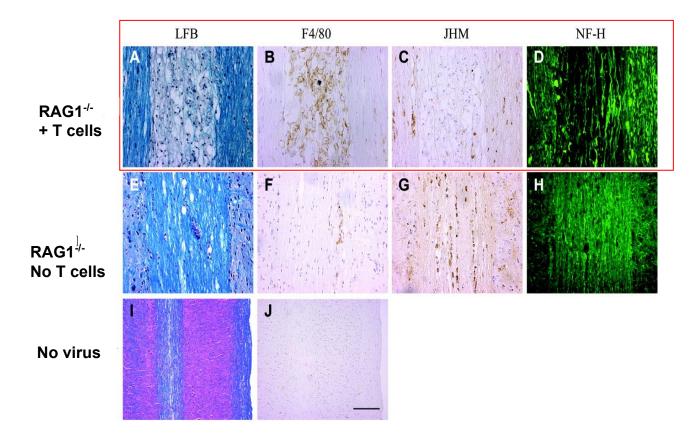
This virus is FIPV with a deleted version of a specific canine CoV S protein. Thus, this virus is not completely new, but is has gained the ability to transmit via recombination. The virus is highly virulent and transmissible.

Prediction #2-Surveillance will be critical for identifying potential pandemic viruses but will be controversial.

- Surveillance is critical to identify possibilities.
- How will surveillance work?
 - Surveillance of wildlife at human-wildlife interface?
 - Definition of high risk areas.
 - Surveillance for antibody responses to high risk pathogens in specific locations of high zoonotic cross over?
 - Surveillance of patients with pneumonia in high risk areas?

Prediction #2-Surveillance will be critical for identifying potential pandemic viruses but will be controversial.

- Surveillance has to be focused. Otherwise, there will be information overload.
 - What will we do with information? Several studies prior to 2019 demonstrated the presence of bat CoVs able to infect human cells.
 - In retrospect, what could we have done with this information? Vaccine development? Development of anti-viral therapies? Unlikely that either approach would have received monetary support prior to 2019.
 - Development of MERS-CoV vaccine did not receive adequate funding prior to the pandemic.
- There are also those who believe that surveillance is bad because it potentially releases human pathogens from sequestered reservoirs into human populations.
 - High biosafety laboratories used for these studies. Contrary to statements made in parts of the press and by several individuals, these are safe.
 - Key will be to make sure that users adhere to biosafety and biosecurity guidelines.


Prediction #3-We will know more about the agent causing the next pandemic than we think

- In beginning of pandemic, there was fear of the unknown, especially given the 1-2% mortality.
- However, even though the coronavirus research community was tiny, much was known about the replication strategy of the virus.
- Reverse genetics systems were well established.
- Potential targets for anti-viral therapy were known.
 - Protease inhibitors had been developed for FIPV. These reduced mortality from 100% to 50%.

Prediction #3-We will know more about the agent causing the next pandemic than we think

- Vaccines had been developed for coronaviruses that caused disease in farm and companion animals.
 - Many of these were ineffective.
 - Some were deleterious. Under research settings, vaccination with the FIPV S protein resulted in enhanced disease because of change in tropism to macrophages.
 - This raised concerns about antibody disease enhancement at the beginning of the pandemic.
- We knew the major target for the neutralizing antibody response.
- We knew about the target for the T cell response in humans and experimentally infected laboratory animals.
- We knew that coronaviruses caused immunopathological disease.

Immunopathology in a murine CoV infection. Virus clearance and concomitant myelin destruction and axonal damage

Prediction #3-We will know more about the agent causing the next pandemic than we think

- We knew that RNA viruses lack proofreading activity so were present as quasispecies swarms in any individual host.
 - This occurred because viral RNA-dependent RNA polymerases lack proofreading activity.
 - This was true even for coronaviruses, which encode a protein with proofreading activity (nsp4). Error rate is still substantially higher than host or DNA virus polymerases.
 - We knew that these viruses readily mutated, but we did not know the level to which SARS-CoV-2 would mutate, initially to enhance replication and transmission and later to evade the host immune response.
- We knew how to monitor changes in virus sequence.
 - This was based in part on experience with influenza virus evolution
 - Some of these changes enhanced the ability of the virus to enter cells.
 - The basis of many other changes is still an area of investigation.

Prediction #4-We will make mistakes

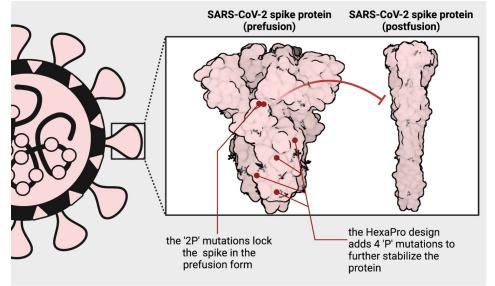
- In the COVID-19 pandemic, several types of mistakes were made, many only apparent in retrospect.
- Some were medical in nature.
 - Pathophysiology, at least at early times after infection, was different from other respiratory infections.
 - Use of ventilators early in the pandemic created problems.
- Some therapeutic interventions were attempted without supportive data.
 - Most highly publicized examples were hydroxychloroquine and ivermectin.
 - Ivermectin useful for treating parasitic infections (e.g., strongyloidiasis, Onchocerciasis), scabies, etc.
 - No proven efficacy in viral infections.
 - Even as of January 2024, ivermectin is recommended for therapy by some physicians.

Prediction #4-We will make mistakes-hydroxychloroquine

- Pre-pandemic in vitro studies showed that chloroquine and hydroxychloroquine inhibited coronavirus entry, but only when virus entered cells via the endosomal pathway.
- No evidence for efficacy in coronavirus-infected animals (prepandemic).
- In pandemic, hydroxychloroquine was used for therapy, with change of rationale now including anti-inflammatory effects.
- Became politicized.
- Large studies showed that HCQ was not beneficial and potentially harmful.

Prediction #4-We will make mistakes in communication

- Communication to broad public was often difficult; errors were made.
- Many of these errors occurred because new information was available on almost a daily basis.
 - For example, initially, pregnancy was not considered a risk factor for worse COVID-19.
 - Then it became apparent that fetuses were not infected, but the placenta could be. Pregnancy outcomes were worse.
 - Finally it was realized that pregnancy itself was a risk factor for worse outcomes, including ICU admission and death.


Prediction #4-We will make mistakes in communication

- Other errors had multifactorial bases, such as messaging on use of masks.
 - Originally, masks were considered unnecessary, since spread was considered to be by contact or large droplets.
 - Based in part on studies of infection with respiratory syncytial virus and other respiratory virus infections.
 - It became apparent that virus spread in small droplets.
 - In addition, at the beginning of the pandemic, there was a mask shortage. This was part of the basis for not recommending mask usage.
 - In retrospect, information about mask usage could have been more nuanced.
- School closures are a second example.
 - Appeared necessary to stem pandemic early on.
 - However, it became apparent that children did not transmit SARS-CoV-2, but schools remained closed for longer than necessary in many places.
 - Some children are still suffering from years of lost education.

Prediction #5-We will make effective uses of scientific advances

- Most obvious example from COVID-19 is vaccine development.
 - mRNA vaccines were possible because of advances in:
 - RNA technology
 - vaccine formulation (nanoparticles, lipid nanoparticles)
 - Adjuvants (e.g., Matrix-M used in Novavax vaccine (S protein-based).
 - SARS-CoV-2 and RSV vaccine development also made use of development of pre-fusion surface glycoprotein constructs.
- Vaccine development was enhanced by these advances but they were not

necessary.

Biorender, Vanderbilt Institute for Infection, Immunology and Inflammation

Prediction #5-We will make effective uses of scientific advances

- Advances partly derived from COVID-19 pandemic will used in the future.
- 1. Correlates of protection better (not perfectly) understood.
- 2. Maturation of antibody response (memory B cells vs. plasma cells)
- 3. Importance of non neutralizing antibody titers in protection
 - T cells
 - Non neutralizing antibody function
 - Memory innate cell functions.
- 4. Nuances of antigenic imprinting.
- 5. Use of wastewater to monitor virus spread, especially when virus testing is diminished.
- 6. Use of human challenge trials.

Prediction #6-A future pandemic will bring out the opportunists.

- Disagreements about best approaches are important because they often lead to better approaches but become intractable when they end up as political discussions.
- Individuals and groups will use fear as tool to gain power and money.
- Power: "Florida State Surgeon General Calls for Halt in the Use of COVID-19 mRNA Vaccines" because of "the risk that DNA integrated into sperm or egg gametes could be passed onto offspring of mRNA COVID-19 vaccine recipients."
- Money: Anti-vaccination websites sold unproven therapies such as ivermectin, which led to profits.
- These claims are often hard to refute because of distrust of healthcare authorities plus desire for an easy and quick remedy.

Prediction #7- There will be better availability of vaccines and therapies worldwide.

- Countries like India were able to produce large amounts of vaccines and anti-viral therapies, increasing accessibility of cheaper vaccines worldwide.
- This may ameliorate some of the global inequalities in terms of vaccine and to a lesser extent antiviral therapies.
- Organizations such as CEPI are stockpiling vaccines.
 - This has limitations because vaccines expire and we do not know what will actually be needed against the next pathogen.
 - We also learned that vaccines can be produced very rapidly and safely.
- However, it will be critical to overcome vaccine hesitancy.

Prediction #8- There will be cheap and readily available antiviral therapies (aspirational)

- An oral anti-viral therapy would be more readily accepted by general populations.
- Paxlovid is highly effective, but too expensive, especially in low income countries.
- For CoV, would protease inhibitors be effective against a broad range of coronaviruses?
- Stockpiling these would need to overcome problems with expiration dates.

Prediction #9-There will be less ethnic, racial and economic disparities in access to vaccines and therapy (aspirational)

- There were differences in access to vaccines and therapies, depending on ethnic, racial and economic factors.
- There were also differences in acceptability to different communities, as least in the US.
 - African-American communities were distrustful of the healthcare system for multiple reasons (poor access to healthcare, conscious and unconscious bias, history fo clinical trials without appropriate consent, etc.
- However, many of these disparities in vaccine uptake decreased over the course of the pandemic, in part because white Americans decreased vaccine uptake.
- Uptake in aged populations was not a factor in the US, but was in countries such as China.
- These factors are independent of disparities in access to mRNA vaccines and requirements for cold chains.

Prediction #10- There will be human altruism.

- Healthcare workers, including physicians, nurse, medical assistants, ambulance drivers, cafeteria workers, etc.
 - Some were poorly paid
- As critically, those who provided basic services-police, fire fighters, custodians, etc.
- In research laboratories, animal facility personnel,

Prediction #10- There will be human altruism.

Prediction #11-If the next pandemic is caused by a CoV, it will not be a sarbecovirus

- MERS-CoV, the cause of the Middle East Respiratory Syndrome coronavirus is a camel virus with little interhuman transmission except in hospital and perhaps household settings.
- MERS-CoV could become more transmissible.
- However, from the COVID-19 pandemic we learned that it is not the known CoV (such as SARS-CoV) that are a problem, but rather the unknown CoV.
- Thus MERS-like CoV, probably in bats, camelids and perhaps other animals must be high on the list of pathogens that require vigilance.
- An additional concern is that some MERS-like CoV can use ACE2 as receptor

Acknowledgments

Perlman lab

- Skyler Moye
- Abhishek Verma
- Kurt Bedell
- Shea Lowery
- Alan Sariol
- Ruangang Pan
- Noah Schuster

McCray lab

Christine Wohlford-Lenane

Funding from the NIH

