

Prof Margie Danchin

Director of Clinician-Scientist Pathways Melbourne Medical School

New technology vaccines: Safety and efficacy

3:40 pm

New vaccine technology - safety and efficacy?

Immunisation Coalition Conference 5th Feb 2024

Prof Margie Danchin

Vaccine Uptake Group, Murdoch Children's Research Institute

Department of Paediatrics, The University of Melbourne

Department of General Medicine, The Royal Children's Hospital

- Review vaccine technology, safety and efficacy
 - mRNA vaccines in the pipeline
 - Pre-fusion F protein RSV vaccines
 - Older adults
 - Babies
- Vaccines (maternal product)
- Immunization with monoclonal antibody (infant product)
- New needle free dermal high density vaccine microarray patches

US/China/W Europe - Strong R&D capabilities and regulatory policy support

Only 25% developed by academic or other non-profit organizations

The R&D landscape for infectious disease vaccines

As of 1 January 2023, the global vaccine R&D landscape includes 966 candidates

Top 3 viruses – COVID, Flu, HIV

Fig. 2 | Distribution of vaccine candidates by geographic location and type of developer. a, Vaccine candidates with developers from the USA, China and western Europe, categorized by technical platform. b, Candidates for the top six diseases for vaccine development, by type of developer. See Supplementary information for details.

Yue J, Liu Y, Zhao M, Bi X, Li G, Liang W. The R&D landscape for infectious disease vaccines. Nat Rev Drug Discov. 2023 Jul 20.

mRNA vaccines

Messenger RNA vaccines get the recipient's body to produce a viral protein that then stimulates the desired immune response.

mRNA vaccines in the pipeline

 mRNA vaccines used in a diverse array of medical conditions ie infectious diseases, cancers, immunological diseases, tissue damages and rare diseases

Cancers: melanoma, brain cancer, non-small cell lung cancer, ovarian cancer, prostate cancer, blood system cancer, digestive system cancer, and breast cancer

Zhang, G., Tang, T., Chen, Y. *et al.* mRNA vaccines in disease prevention and treatment. *Sig Transduct Target Ther* **8**, 365 (2023).

Cardiac and vascular events observed with mRNA vaccines, any dose

81 articles analyzed confirmed cardiovascular complications post-COVID-19 mRNA vaccines in 17,636 individuals and reported 284 deaths with any mRNA vaccine: 228 Pizer and 56 Moderna

Asghar MS et al. Adverse events following COVID-19 mRNA vaccines: A systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immun Inflamm Dis. 2023 Mar; 11(3): e807.

Preventing Infant RSV Disease in infants

- Most (68%) infants are infected in the first year of life and nearly all (97%) by age 2
- Most urgent need for protection against RSV is during first few months of life
 - Premature infants <30 weeks gestation have hospitalization rates ~ 3x higher than term infants
 - >75% of RSV disease hospitalization occurs in full term, healthy infants.
- 2-3% of all infants will be hospitalized for RSV, up to 8% Aboriginal babies
- Efficient RSV-specific IgG transfer from mothers to neonates

Australia Burden of RSV

🗕 📄 📕 murdoch

THE CONVERSATION

Academic rigour, journalistic flair

Q Search analysis, research, aca

Societal Costs of RSV

• RSV leading cause of hospitalisation in young children.

• The societal cost (i.e. hospital care, productivity loss and out-of-pocket expenses) of hospitalisation of Australian children < 5 years with RSV is estimated at \$193 million per year

• More than 90% load is from developing world but no costing data exists?

It's the <u>most common</u> cause of hospitalisation in infants. Most children have at least one RSV infection by the age of three years and yet, many Australians have not heard of RSV or know little about this potentially serious winter virus.

Read more: Monday's medical myth: you can catch a cold by getting cold

Independent, free and evidence-based.

Get newsletter

What is RSV?

RSV stands for respiratory syncytial (pronounced sin-CITY-al) virus. This common respiratory virus usually causes a mild cold with symptoms such as a Murdoch Children's Research Institute

Danielle Wurzel

Paediatric Respiratory Physician, and Honorary Fellow Manager, Murdoch Children's Research Institute

Margie Danchin Paediatrician at the Royal Childrens Hospital and Associate Professor and Clinician Scientist, University of Melbourne and MCRI, Murdoch Children's Research Institute

RSV and influenza burden compared – Adults ≥ 65 years

RSV

Influenza

- Thompson et al, JAMA (2003): <u>https://doi.org/10.1001/jama.289.2.179</u>
- Matias et al, Influenza Other Respi Viruses (2014): https://doi.org/10.1111/irv.12258
- Hansen et al, JAMA Network Open (2022): https://doi.org/10.1001/jamanetworkopen.2022.0527
- Widmer et al, JAMA Network Open (2012): https://doi.org/10.1093/infdis/jis309
- McLaughlin et al, Open Forum Infect Dis (2022): https://doi.org/10.1093/ofid/ofac300
- Zheng et al, Pneumonia (2022): <u>https://doi.org/10.1186/s41479-022-00098-x</u>
- Branche et al, Clinical Infect Dis (2022): https://doi.org/10.1093/cid/ciab595
- CDC RSV-NET data 2016–2020 (unpublished)

1.

2.

3.

4.

5.

6.

7

CDC Influenza Burden 2015-2020: https://www.cdc.gov/flu/about/burden/past-seasons.htm

RSV Virion Structure

The Fusion Protein exists in two or more structural forms, which bind different antibodies

Graham B. Current Opinion in Virology. 23: 107-112. 2017.

E

New Immunizations to Protect Against Severe RSV

	Who Does It Protect?	Type of Product	Is It for Everyone in Group?
Res Contraction	Adults 60 and over	RSV vaccine	Talk to your doctor first
	Babies	RSV antibody given to baby	All infants entering or born during RSV season. Small group of older babies for second season.
Mo	Babies	RSV vaccine given during pregnancy	Can get if you are 32–36 weeks pregnant during September–January

www.cdc.gov/rsv

•

Bivalent RSV Prefusion F Vaccine

Proposed Indication:

Prevention of acute respiratory disease and lower respiratory tract disease caused by respiratory syncytial virus (RSV)

STORAGE

- 120 µg without an adjuvant
- Dose contains 60 µg dose of each prefusion protein antigen, in a 0.5 mL injection
 - Single dose 2 mL vial
- 1 mL Pre-filled syringe
- Vial adaptor
- Refrigeration at 2°C to 8°C (36°F to 46°F)
- After reconstitution: 15°C to 30°C (used within 4 hours of reconstitution)

Pfizer RSVpreF efficacy and safety – Adults >=60 years

TABLE 3. Efficacy of 1 dose of Pfizer respiratory syncytial virus RSVpreF vaccine against respiratory syncytial virus–associated disease among adults aged ≥60 years — multiple countries, 2021–2023

	Vaccine efficacy against outcome, % (95% CI)*			
Efficacy evaluation period	RSV-associated LRTD [†]	RSV-associated medically attended LRTD [§]		
Season 1 [¶]	88.9 (53.6-98.7)	84.6 (32.0-98.3)		
Season 2 (interim)**	78.6 (23.2-96.1)			
Combined seasons 1 and 2 (interim) ^{§§}	84.4 (59.6-95.2)	81.0 (43.5–95.2)		

TABLE 4. Safety* of 1 dose of Pfizer respiratory syncytial virus RSVpreF vaccine in adults aged ≥60 years — multiple countries, 2021–2023

	Risk for event				
Safety event	RSVpreF recipients no./No. (%) [†]	Placebo recipients no./No. (%) [§]	Relative risk (95% CI) [¶]		
Serious AE**	792/18619 (4.3%)	749/18334 (4.1%)	1.04 (0.94-1.15)		
Severe reactogenicity events ^{††}	36/3673 (1.0%)	24/3491 (0.7%)	1.43 (0.85–2.39)		
Inflammatory neurologic events ^{§§}	3/18622 (—) ^{¶¶}	0/18335 (—)	_11		

<u>Use of Respiratory Syncytial Virus Vaccines in Older Adults: Recommendations of the</u> <u>Advisory Committee on Immunization Practices — United States, 2023 | MMWR (cdc.gov)</u>

GSK's RSV older adult vaccine

The combination of RSVPreF3 (120 μ g) and AS01_E is designed to induce a robust humoral and cellular immune response, to help protect older adults and those with underlying comorbidities

(RESPIRATORY SYNCYTIAL VIRUS VACCINE, ADJUVANTED)

AS01_E, Adjuvant System 01_E (25 µg Quillaja saponaria Molina, fraction 21, 25 µg 3-Odesacyl-4'- monophosphoryl lipid A); OA, older adults. Image of F protein reproduced from Graham RS, et al. *Curr Opin Immunol* 2015;35:30–38, Copyright 2015, with permission from Elsevier 1. Graham B3, et al. *Curr Opin Immunol*. 2015;35:30–38; 2. Leroux-Roels I, et al. *J Infect Dis*. 2022;jac327.

1 Presentation by CSK to the ACIP Oct 20, 2022 TABLE 1. Efficacy of 1 dose of GSK respiratory syncytial virus RSVpreF3 vaccine against respiratory syncytial virus–associated disease among adults aged ≥60 years — multiple countries, 2021–2023

	Vaccine efficacy against outcome*			
Efficacy evaluation period	RSV-associated LRTD [†]	RSV-associated medically attended LRTD [§]		
Season 1 [¶]	82.6 (57.9-94.1)**	87.5 (58.9-97.6)**		
Season 2 ^{§§}	56.1 (28.2-74.4)**	_11		
Combined seasons 1 and 2 (interim)***	74.5 (60.0-84.5) ^{†††}	77.5 (57.9-89.0) ^{††}		

TABLE 2. Safety* of 1 dose of GSK respiratory syncytial virus RSVPreF3 vaccine in adults aged ≥60 years — multiple countries, 2021–2023				
	Risk for event			
	RSVPreF3 recipients	Placebo	Relative risk	

Safety event	recipients no./No. (%) [†]	recipients no./No. (%) [§]	Relative risk (95% CI) [¶]
Serious AE**	549/12,570 (4.4)	540/12,604 (4.3)	1.02 (0.91-1.15)
Severe reactogenicity events ^{††}	37/979 (3.8)	9/976 (0.9)	4.10 (1.99-8.45)
nflammatory neurologic events ^{§§}	nmatory 3 events in trials rologic events ^{§§} without placebo recipients ^{¶¶}		1 _11

Use of Respiratory Syncytial Virus Vaccines in Older Adults: Recommendations of the Advisory

Committee on Immunization Practices — United States, 2023 | MMWR (cdc.gov)

Cases of Guillain Barre syndrome were reported after vaccination with both investigational vaccines

- All cases had onset during the 42-day risk window post-vaccination used in CDC surveillance
- The significance of 1-2 cases in safety databases of 15,000-26,000 persons is unclear
- Population-based rates of GBS increase with age
- Postmarketing studies required

Morbidity and Mortality Weekly Report

Use of Respiratory Syncytial Virus Vaccines in Older Adults: Recommendations of the Advisory Committee on Immunization Practices — United States, 2023

Michael Melgar, MD¹; Amadea Britton, MD¹; Lauren E. Roper, MPH¹; H. Keipp Talbot, MD²; Sarah S. Long, MD³; Camille N. Kotton, MD⁴; Fiona P. Havers, MD¹

Recommendations for Use of RSV Vaccines in Older Adults

On June 21, 2023, ACIP recommended that adults aged ≥60 years may receive a single dose of RSV vaccine, using shared clinical decision-making.^{§§§§}

Comparison of Different Strategies to Protect Infants During Their First RSV Season

	Immunisation with licensed mAbs	Immunisation with extended half-life mAbs	Maternal immunisation
Antibody Transfer	 Not affected by mother's health or transplacental transfer¹ 	 Not affected by mother's health or transplacental transfer¹ 	 Various factors like mother's health and preterm birth can impact antibody production and transplacental transfer⁶⁻⁸
Consistency of Protection	 Consistent and robust, antibodies delivered by IM injection and rapidly reach the bloodstream²⁻⁴ Rapid waning⁵ 	 Consistent and robust, antibodies delivered by IM injection and rapidly reach the bloodstream²⁻⁴ 	 Not consistent in all infants as it depends on timing of mother's immunisation prior to delivery, mother's comorbidities (HIV, malaria)^{6,7,9}
Flexibility and Timing of Immunisation	 Can time immunisation to the start of RSV circulation^{1,2} Requirement for monthly dosing can present a barrier to compliance^{1,2} 	 Can time immunisation to the start of the RSV circulation¹ 	 Must be administered during third trimester of pregnancy, regardless of timing of RSV circulation^{1,3}

IM: intramuscular; mAbs: monoclonal antibodies

1. Esposito S et al. Front Immunol. 2022;13:880368. 2. Robbie GJ et al. Antimicrob Agents Chemother. 2012;56(9):4927-4936. 3. Domachowske JB et al. Pediatr Infect Dis J. 2018;37(9):886-892. 4. Aliprantis AO et al. Clin Pharmacol Drug Dev. 2021;10(5):556-566. 5. Subramanian KN, et al. Pediatr Infect Dis J. 1998;17(2):110-115. 6. Saso A et al. Front Microbiol. 2020;11:1499. 7. Pou C et al. Nat Med. 2019;25(4):591-596. 8. Elchinger KM et al. Ther Adv Vaccines Immunother. 2021;9:2515135520981516. 9. Malek A et al. Am J Reprod Immunol. 1996;36(5):248-255.

Maternal Pfizer RSV vaccine

The NEW ENGLAND JOURNAL of MEDICINE

Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants

B. Kampmann, S.A. Madhi, I. Munjal, E.A.F. Simões, B.A. Pahud, C. Llapur, J. Baker, G. Pérez Marc, D. Radley, E. Shittu, J. Glanternik, H. Snaggs, J. Baber, P. Zachariah, S.L. Barnabas, M. Fausett, T. Adam, N. Perreras, M.A. Van Houten, A. Kantele, L.-M. Huang, L.J. Bont, T. Otsuki, S.L. Vargas, J. Gullam, B. Tapiero, R.T. Stein, F.P. Polack, H.J. Zar, N.B. Staerke, M. Duron Padilla, P.C. Richmond, K. Koury, K. Schneider, E.V. Kalinina, D. Cooper, K.U. Jansen, A.S. Anderson, K.A. Swanson, W.C. Gruber, and A. Gurtman, for the MATISSE Study Group*

- Phase 3, double-blind trial
- 7392 Maternal participants in 18 countries
- Pregnant women < 50 years between
 24-38 weeks gestation, inclusive
- Randomized 1:1 to Pfizer bivalent RSV Prefusion F vaccine or placebo
- Well-tolerated
- Effective against medically attended severe RSV-associated lower respiratory tract illness in infants

Primary Endpoints: Vaccine efficacy by cumulative days after birth for two primary endpoints

Medically attended severe lower respiratory tract illness occurred within 90 days after birth - VE 81.8%; 99.5% CI, 40.6 to 96.3

Medically attended RSV-associated lower respiratory tract illness occurred within 90 days after birth - VE 57.1%; 99.5% CI, 14.7 to 79.8 – NOT significant

Safety

B Adverse Events of Special Interest

Prematurity:

201 babies (5.6%) were born prematurely to vaccinated mothers v 169 babies (4.7%) in the placebo group

- not statistically significant
- no imbalance of neonatal deaths observed

No safety signals were detected in maternal participants or in infants and toddlers up to 24 months of age

SCIENCEINSIDER HEALTH

FDA advisers agree maternal RSV vaccine protects infants, but are divided on its safety

Some have concerns about premature births after vaccination against respiratory syncytial virus

19 MAY 2023 • 1:35 PM • BY MEREDITH WADMAN

Maternal RSV vaccine: Further analysis is urged on preterm births. BMJ 2023;381:p1021

Approval for RSVpreF vaccine for pregnant women

- Licensures: FDA, Argentina (32-36 weeks), EMA (24-36 weeks)
- FDA approved as a single dose 32-36 weeks gestation
 - reduce potential risk of and complications from preterm birth
 - Similar vaccine efficacy in 32-36 wks gestation compared to overall study pop
 - Avoids risk of extremely preterm births
 - FDA has required manufacturer to conduct post-marketing studies to assess preterm birth and hypertensive disorders of pregnancy, including pre-eclampsia

Recommendations:

- ACIP
 - US (32-36 weeks, seasonal)
- JVAC, UK
 - All year administration, no gestational age restrictions noted
- Low and middle resource countries?
 - SAGE working group....coming soon

Nirsevimab - Outcomes through 150 days after injection

Table 3. Outcomes through 150 Days after the Injection.*						
Outcome	Nirsevimab (N = 686)	Placebo (N = 342)	Efficacy (95% CI)†	Cases Averted per 1000 Infants Treated (95% CI):	Number Needed to Treat (95% CI)§	
	no. (%)				
Medically attended RSV-associated lower respiratory tract infection on any test result¶	17 (2.5)	37 (10.8)	77.0 (59.8 to 86.8)	83.4 (62.0 to 105.0)	12 (10 to 17)	
Medically attended RSV-associated lower respiratory tract infection on central test result¶	15 (2.2)	33 <mark>(</mark> 9.6)	77.2 (58.7 to 87.5)	74.7 (53.0 to 95.0)	14 (11 to 19)	
Medically attended lower respiratory tract infection of any cause¶	60 (8.7)	62 (18.1)	51.5 (32.6 to 65.2)	93.6 (63.0 to 124.0)	11 (9 to 16)	
Hospitalization for any respiratory ill- ness due to RSV on any test result	9 (1.3)	11 (3.2)	59.0 (2.1 to 82.9)	19.0 (5.5 to 32.0)	53 (32 to 182)	
Hospitalization for any respiratory illness due to RSV on central test result	7 (1.0)	9 (2.6)	61.1 (-3.7 to 85.4)	16.1 (4.5 to 28.0)	62 (36 to 223)	
Hospitalization for any respiratory ill- ness of any cause	16 (2.3)	14 (4.1)	42.8 (-15.8 to 71.7)	17.7 (2.0 to 33.0)	57 (31 to 500)	

٠

ACIP and AAP recommendations for the use of the monoclonal antibody nirsevimab for the prevention of RSV disease

Approved by US FDA on July 17, 2023

- Long-acting monoclonal antibody for use in newborns and infants
- Recommended for:
 - All infants younger than 8 months born during or entering their first RSV season
 - Infants and children aged 8 through 19 months who are at increased risk of severe RSV disease and entering their second RSV season
 - Increased risk: chronic lung disease of prematurity who required medical support; severely immunocompromised; cystic fibrosis with severe lung disease American Indian and Alaska Native children
- Regulatory approval in UK and Europe (June 2023)
- Australia ? nirsevimab and maternal vaccine programs work together

Needle free dermal high density vaccine microarray patches

- Novel vaccination strategies with needle-free technologies - microarray patches (MAPs)
- Rapid development last 10 years
- MAPs categorized into five main types: solid, coated, dissolvable, hollow and hydrogel-forming:
 - house an array of microprojections 100–1500 μm in length
 - breach outer layer of the skin to deliver antigen into the epidermal and dermal layers
 - applied either by pressing onto the skin or with applicators
 - compatible with a variety of vaccine modalities (DNA, live attenuated virus, mRNA, conjugate, subunit, inactivated virus, chimeric virus)

Coated MAPs

• Vaccines are dry coated onto the tips of the microprojections before application to the skin

- Coated MAPs are one of the more popular choices for vaccine delivery, short wear time <2 mins
- Been evaluated with viral vaccine candidates such as Influenza, SARS-CoV-2, dengue, Ebola, poliovirus, measles, hepatitis C, HPV, and RSV
- 3 phase I clinical trials for influenza using coated MAPs have been conducted by Vaxxas Pty Ltd
 - significantly higher antibody response using MAPs over the traditional N&S method
 - HD-MAP delivery of flu vaccine well tolerated with only mild and moderate AEs reported

Acknowledgements

Kathleen Neuzil, MD, MPH Myron M. Levine MD DTPH Professor in Vaccinology Director, Center for Vaccine Development and Global Health

