

A/Prof Kirsty Short The University of Queensland

Influenza and COVID-19 effects of and on chronic diseases

7:30 pm

Diabetes increases the severity of influenza

High glucose levels increase influenzaassociated damage to the pulmonary epithelial-endothelial barrier

Katina D Hulme¹, Limin Yan¹, Rebecca J Marshall¹, Conor J Bloxham², Kyle R Upton¹, Sumaira Z Hasnain³, Helle Bielefeldt-Ohmann^{1,4}, Zhixuan Loh⁵, Katharina Ronacher^{3,4}, Keng Yih Chew¹, Linda A Gallo^{2,3}, Kirsty R Short^{1,4}*

Rates of Severe Influenza-Associated Outcomes Among Older Adults Living With Diabetes—Influenza Hospitalization Surveillance Network (FluSurv-NET), 2012–2017

Daniel Owusu,^{1,2,©} Melissa A. Rolfes,² Carmen S. Arriola,² Pam Daily Kirley,³ Nisha B. Alden,⁴ James Meek,⁵ Evan J. Anderson,^{6,7,8,©} Maya L. Monroe,⁹ Sue Kim,¹⁰ Ruth Lynfield,¹¹ Kathy Angeles,¹² Nancy Spina,¹³ Christina B. Felsen,¹⁴ Laurie Billing,¹⁵ Ann Thomas,¹⁶ H. Keipp Talbot,¹⁷ William Schaffner,¹⁷ Ryan Chatelain,¹⁸ Carrie Reed,^{2,©} and Shikha Garg²

Diabetes and the Severity of Pandemic Influenza A (H1N1) Infection

ROBERT ALLARD, MD^{1,2,3} PASCALE LECLERC, MSC^{1,3} Claude Tremblay, msc¹ Terry-Nan Tannenbaum, md^{1,2} subjects, and those hospitalized without ICU admission, i.e., the control subjects. The associations between patient char-

Diabetes increases the severity of COVID-19

D+L	. 51	ubtotal	

Site

Diabetes Care

Models adjusted for: BMI categories; Age; Sex; Pre-existing cardiovascular disease; Hypertension and Pre-existing respiratory disease. Reference is patients without diabetes

EPIDEMIOLOGY / HEALTH SERVICES RESEARCH | APRIL 15 2021

Weight

Diabetes and Overweight/Obesity Are Independent, Nonadditive Risk Factors for In-Hospital Severity of COVID

Hypothesised mechanisms

- Chronic inflammation
- Metabolic disorders impairs T cell immunity

Decreased T cell migration

Reduced cytokine expression after stimulation

Accumulation of higher senescent T-cell numbers

STATE-OF-THE-ART REVIEW

The role of T-cell immunity in COVID-19 severity amongst people living with type II diabetes

Zhen Wei Marcus Tong¹ , Emma Grant^{2,3}, Stephanie Gras^{2,3}, Melanie Wu¹, Corey Smith⁴, Helen L. Barrett^{5,6}, Linda A. Gallo⁷ and Kirsty R. Short¹

A causative role for hyperglycaemia?

Diabetologia (2007) 50:549–554 DOI 10.1007/s00125-006-0570-3

ARTICLE

Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome

T. Benfield · J. S. Jensen · B. G. Nordestgaard

Hyperglycaemia increases the innate inflammatory response to influenza

Hocking et al., unpublished

Hyperglycaemia increases the innate inflammatory response to influenza

T cell responses and hyperglycaemia

	Donors without diabetes (n=16)	Donors with diabetes (n=72)	<i>P</i> -value
Age, years	28.1 ± 5.4	30.6 ± 11.6	0.874
Female/Male (% Female)	11/5 (68.8%)	44/28 (60.3%)	0.776
BMI (kg/m ²)	23 ± 4.6	27 ± 5.4	0.006 (*)
Ethnicity, % Caucasian	68.8%	83.6%	0.157
HbA1c (%)	5.2 ± 0.3	8.4 ± 1.7	<0.0001 (*)
T1DM/T2DM (% T1DM)	N/A	66/6 (90.4%)	N/A
Insulin treatment	N/A	66/6 (90.4%)	NA
Duration of Diabetes (years)	N/A	14.8 ± 7.2	N/A
Non-steroidal anti- inflammatory drug (NSAID) use (% use)	0/16 (0%)	4/68 (5.5%)	>0.999

Katina Hulme

Hyperglycaemia is associated with reduced TNFa production by CD8+ T cells

Is hyperglycaemia an oversimplification?

Coefficient of Variation (CV) =
$$\frac{\text{amplitude SD}}{\text{glucose mean}} \times 100\%$$

Acta Diabetologica (2021) 58:1701–1704 https://doi.org/10.1007/s00592-021-01779-7

SHORT COMMUNICATION

High glycaemic variability is associated with progression of COVID-19

High GV associated with reduced TNFa production by CD8+ T cells

G 2.5

2.0-

+ 1.5-2 Jo % 1.0-

0.5-

0.0-Function CD107a IFNγ MIP-1β TNF

.

Healthy

Low GV

High GV

	Low glycaemic variability group (n=13)		<u>High glycaemic variability</u> group (n=19)		<u>P value²</u>
	Mean (SD)	%	Mean (SD)	%	
Age (years)	29.88 (±11.69)	-	26.49 (±6.67)	-	0.6172
Sex (male/female)	4/13	30.8%	6/19	31.6%	0.5993
BMI (kg/m ²)	26.33 (±4.79)		26.45 (±4.94)		>0.9999
HbA1c (%)	7.92 (±1.75)	-	7.75 (±1.42)	-	0.5505
Diabetes duration (years)	14.54 (±9.12)	-	15.15 (±5.24)	-	0.6151
Average blood glucose (mmol/L) ³	11.83 (±3.54)	-	9.83 (±2.65)	-	0.0823
CV (%)	27.01 (±4.32)	-	39.15 (±3.25)	-	<0.0001 (****)
Type of insulin treatment (injection/pump) ⁴	4/9	30.8%	9/10	47.4%	0.3477

Marcus Tong

*

Tong et al., under review

Vaccination in people living with diabetes

- General consensus is that people living with diabetes have equivalent humoral immunity and cellular immunity to mRNA SARS-CoV-2 vaccines and vaccination is highly effective in preventing disease severity
- However, this varies across diabetes subtype, time post-vaccination, type of vaccine, number of vaccine

DIABETES AND COVID19 ARTICLES | AUGUST 21 2022

Immunogenicity and Safety of SARS-CoV-2 mRNA Vaccines in a Cohort of Patients With Type 1 Diabetes **FREE**

Francesca D'Addio; Gianmarco Sabiu; Vera Usuelli; Emma Assi; Ahmed Abdelsalam; Anna Maestroni; Andy Joe Seelam; Moufida Ben Nasr; Cristian Loretelli; Davide Mileto; Giada Rossi; Ida Pastore; Laura Montefusco; Paola S. Morpurgo; Laura Plebani; Antonio Rossi; Enrica Chebat; Andrea M. Bolla; Maria Elena Lunati; Chiara Mameli ⁽¹⁰⁾; Maddalena Macedoni; Spinello Antinori; Stefano Rusconi; Maurizio Gallieni; Cesare Berra; Franco Folli ⁽¹⁰⁾; Massimo Galli; Maria Rita Gismondo; Gianvincenzo Zuccotti; Paolo Fiorina 🐸 ⁽¹⁰⁾ ities (e.g. renal function)

The majority of patients with T1D did not show any increase in the SARS-CoV-2–specific cytotoxic response compared with the robust increase observed in all subjects without diabetes

- General consensus is that people living with diabetes have equivalent humoral immunity to influenza vaccines (cellular immunity not as relevant) and vaccination is highly effective in preventing severe disease
- The offects of veccination ennour to be more effective when using higher dass and quadrivelent veccines.

A Bidirectional Relationship

- A US Center of Disease Control (CDC) analysis of a large electronic health-care database of 353 164 adults with COVID-19 and 1 640 776 controls with no evidence of infection, suggested that people with COVID-19 had an increased risk of new onset type 1 diabetes and type 2 diabetes (*MMWR Morb Mortal Wkly Rep.* 2022; **71**: 713-717)
- A German cohort study of 35 865 people with COVID-19 showed higher risk of newly diagnosed type 2 diabetes than an equal number of matched controls with acute upper respiratory tract infections (*Diabetologia*. 2022; **65**: 949-954)
- Data from the US Department of Veterans Affairs to characterise the risk and 12-month burden of diabetes in 181 280 people with SARS-CoV-2 infection versus two control groups: 4 118 441 contemporary controls who were enrolled during the same time but did not get infected with SARS-CoV-2 and 4 286 911 historical controls from before the pandemic (*Lancet Diabetes Endocrinology* 2022; **11**:11-13)
 - Compared with both the contemporary and historical controls, people with SARS-CoV-2 had increased risk
 of incident diabetes and incident use of antihyperglycemic therapy in the post-acute phase
 - Among people with COVID-19, the risk of diabetes increased in a graded fashion according to baseline risk

A Bidirectional Relationship – Why?

- SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo.
- Human β-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets.
- Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in β-cells and impaired glucose-stimulated insulin secretion
- In COVID-19 full-body postmortem examinations, SARS-CoV-2 nucleocapsid protein was detected pancreatic

narker NKX6.1 and are in close proximity to the ARTICLES metabolism https://doi.org/10.1038/s42255-021-003471

SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas

Does a Bidirectional Relationship Exist with vaccination?

Incidence of diabetes following COVID-19 vaccination and SARS-CoV-2 infection in Hong Kong: A population-based cohort study

Xi Xiong 🔹, David Tak Wai Lui 🔹, Matthew Shing Hin Chung, Ivan Chi Ho Au, Francisco Tsz Tsun Lai, Eric Yuk Fai Wan, Celine Sze Ling Chui, Xue Li, Franco Wing Tak Cheng, Ching-Lung Cheung, Esther Wai Yin Chan, Chi Ho Lee, Yu Cho Woo, [...],Ian Chi Kei Wong 🖾 [view all]

- There was no evidence of increased risks of incident diabetes following COVID-19 vaccination.
- The risk of incident diabetes increased following SARS-CoV-2 infection, mainly type 2 diabetes.
- Subgroup analysis revealed no evidence of increased risk of incident diabetes among fully vaccinated COVID-19 survivors.

COVID-19 Vaccination Prior to SARS-CoV-2 Infection Reduced Risk of Subsequent Diabetes Mellitus: A Real-World Investigation Using U.S. Electronic Health Records ঈ

Tina Yi Jin Hsieh; Renin Chang 💿 ; Su-Boon Yong; Pei-Lun Liao 🗠 ; Yao-Min Hung 💌 💿 ; James Cheng-Chung Wei 💌

- 65% higher risk of new-onset diabetes in SARS-CoV-2–infected individuals compared to noninfected counterparts.
- COVID-19 survivors who received COVID-19 vaccinations experienced a reduced risk of new-onset diabetes, with a dose-dependent effect

Conclusions and implications for patient care

- Vaccination against SARS-CoV-2/influenza virus decreases the risk of severe respiratory viral infections in people living with diabetes
- Vaccination also reduces the risk of diabetes developing following SARS-CoV-2 infection
- Still numerous questions to answer about vaccine efficacy in people living with diabetes: diabetes subtype, time post-vaccination, type of vaccine, number of vaccine doses, infecting viral strain and co-morbidities (e.g. renal function)
- Severe respiratory viral disease in people living with diabetes may be driven by hyperglycaemia: importance of maintaining HbA1c targets
- Glycaemic variability may also play a role: added impetus to make CGMs available to people living with diabetes, including people with type 2 diabetes

Acknowledgements

University of Queensland

Kirsty Short Keng Yih Chew Katina Hulme Ellesandra Noye Nathalie Verzele Melanie Wu

- Mater Research Helen Barett
 Emily Dorey
 Soi Law
- University of
 Sunshine coast
 Linda Gallo

- University of Melbourne Katherine Kedzierska Louise C. Rowntree Carolien E. van de Sandt
- La Trobe University Stephanie Gras Emma Grant
- Sorbonne Université Fawaz Alzaid Jean-Pierre Riveline Jean-Baptiste Julla Charline Potier

SCHOOL OF CHEMISTRY & MOLECULAR BIOSCIENCES

RANSLATIONAL RESEARCH INSTITUT

AUSTRALIA

SORBONNE

UNIVERSITÉ

research

ter

111