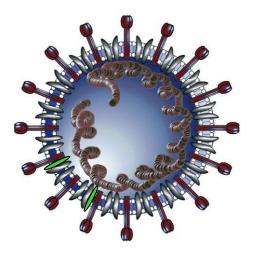

# Natural history of coronaviruses, and what they do.

Stanley Perlman, MD, PhD University of Iowa Distinguished Chair Department of Microbiology and Immunology Department of Pediatrics

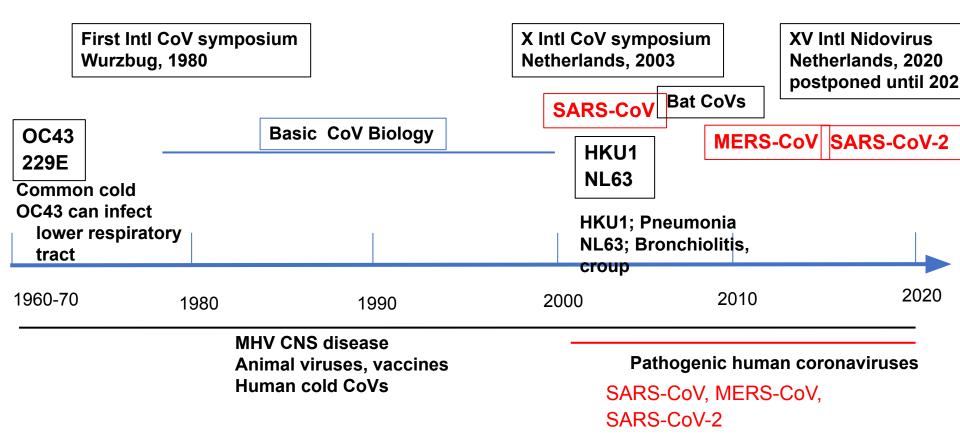
## Coronaviruses



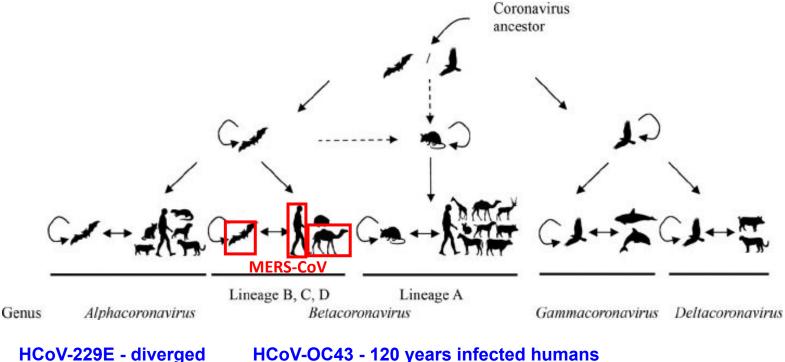
Coronaviruses are a family within the Nidovirus order; named for the nested messenger RNAs generated during infection




30 kb RNA genome


Provided by Dr. Susan Weiss

## Coronaviruses


- Enveloped (+) strand RNA viruses
- 31 kB (only other members of Nidovirales are larger)
- Broad diversity across mammalian and avian species.
- Pneumotropic (cows, human), enterotropic (TGEV, PEDV, porcine deltacoronavirus), neurotropic (swine, MHV)
- 7 known human CoVs: SARS-CoV, MERS-CoV, SARS-CoV-2, OC43, 229E, NL63, HKU-1
  - All respiratory viruses

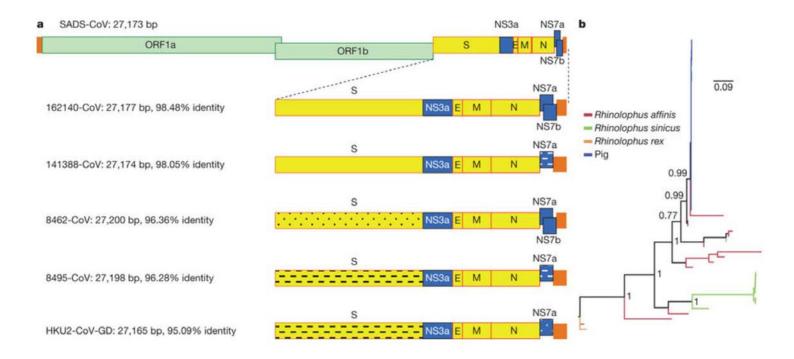


## **Coronavirus Timeline**



#### **Coronaviruses (CoVs) are global zoonotic threats**

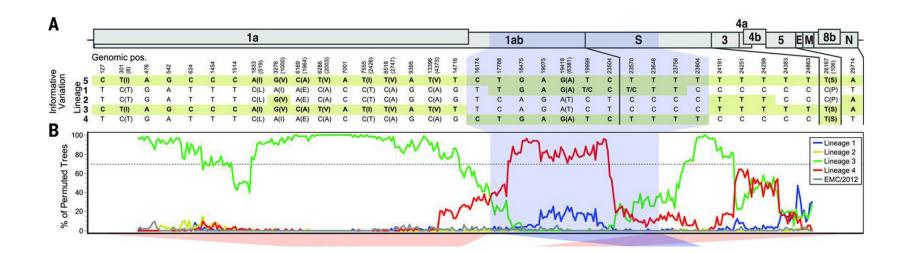



HCoV-229E - diverged HCoV-OC43 - 120 years infected humans HCoV-NL63 1000 year ago SARS-CoV - 18 years MERS-CoV - 9 years

https://www.researchgate.net/figure/Evolution-of-CoVs-from-their-ancestors-in-bat-bird-and-rodent-hosts-to-virus-species\_fig4\_270343342

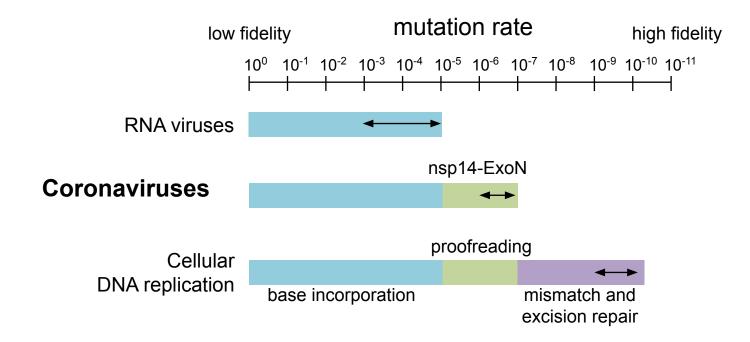
### **Recent human spillovers-2021**

- Canine coronavirus spillover 8 children in Malaysia developed pneumonia. Novel CoV isolated from nasopharyngeal swabs.
  - Backbone-CCoV-II; S1-CCoV-I; S2; FCoV-II.
- Children in Haiti infected with porcine delta coronavirus.
  - RNA found in blood
  - No enteritis or pneumonia.
  - 3 separate introductions into children
  - First delta CoV to infect humans


# Peng Zhou, Hang Fan, [...] Jing-Yun Ma (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin *Nature* **556**:255–258 (2018)



#### High frequency of CoV Recombination Lower frequency of mutations than other RNA viruses


- RNA viruses readily mutate and recombine.
- Unique method of 'leader priming' facilitates recombination.
- Recombination makes it easier for viruses to cross species.
- In camels, there is evidence for recombination between circulating strains of MERS-CoV.
- Recent work shows that nsp14 is also required for recombination.

# High frequency of MERS-CoV Recombination in camels in KSA.



Same recombinant strains are circulating in patients. Are camels reservoir or are they being seeded by virus circulating in another host?

# Coronaviruses have higher replication fidelity than other RNA viruses.



# Immune protection against CoV-General principles

- In experimentally infected animals, both virus-specific antibody and T cells, in sufficient quantities can mediate virus clearance.
- Both are required for clearance.
- In absence of antibody, virus may recrudesce (brain infection).
- In absence of T cells, virus is never cleared from mice infected with murine coronavirus, SARS-CoV, MERS-CoV.
- If RAG1<sup>-/-</sup> mice are treated with very small amounts of antibody at time of infection with murine coronavirus, they survive for at least 3-4 months, with high titers of virus present throughout the animal.
  - Performed before RNA sequencing was routine so information about virus mutations not available.
- Supports the notion of immunopathological disease in CoV infections.

## Immune protection-Non human CoV

- Vaccines against CoV infections in domestic and companion animals provide imperfect protection.
- Feline coronavirus
  - Mutates to causes feline infectious peritonitis virus (lethal disease)
  - Variable protection
  - Antibody enhanced infection of macrophages (best (only?) example of ADE in CoV infection
- Transmissible gastroenteritis virus-usually fatal diarrhea in newborn pigs.
  - Vaccination had variable success, but TGEV no longer a problem.
  - Protective vaccine arose naturally (porcine respiratory virus). Lost ability to infect gastrointestinal tract, but still infected respiratory tract.
  - Shows that live attenuated vaccines results in most effective protection.

# Immune protection-infectious bronchitis virus

- First CoV to be identified was IBV (1931, Schalk and Fawn).
  - Cultured in 1937 by Hudson and Beaudette using chicken embryos.
- Caused bronchitis in very young chickens, with high mortality.
  - Death resulted from obstruction of airways.
- Disease in airways is caused by excessive host response to the virus

## **IBV-vaccine development**

- Avian CoV are continuously evolving in nature.
- Live attenuated vaccines are used in chickens
- This requires vaccine modification fairly often.
- Many strains in the wild are now recombinant vaccine strains.

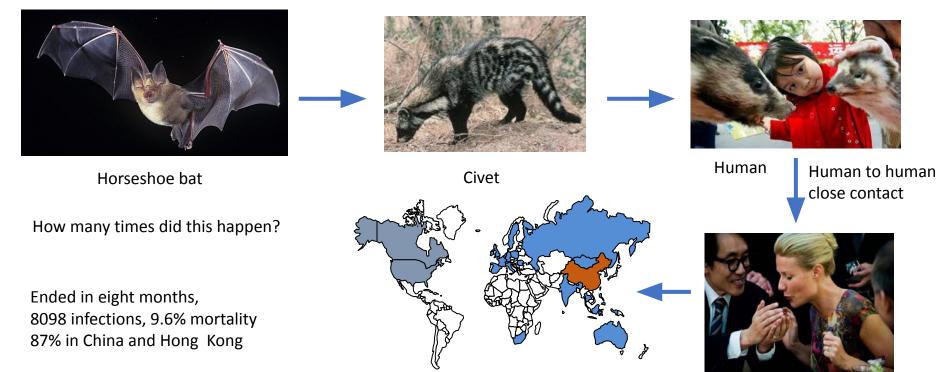
#### Human Common Cold Coronaviruses (HCoVs)

- 229E, HKU1, NL63, OC43
- Up to 15-30% of human colds
- No durable immunity frequent cycles of infection
- Upper Respiratory Infections most common
- Lower Respiratory Infections Aged and immunocompromised patients
- No vaccines or antivirals licensed or in use

## Immune protection-Common Cold CoV

- In non-SARS, non-MERS common cold CoV infections, protection is transient. Waning antibody contributes to susceptibility to reinfection.
- Example:
- 1990 study (Callow et al). 15 volunteers were inoculated with HCoV-229E. 10 with lower antibody titers became infected; 8 developed colds.
- On rechallenge a year later, 9 became reinfected but none developed a cold.
  - Shedding in 6/9 volunteers on reinfection but of shorter duration than observed in primary infection
- Another study tracked common cold CoV infections over 35 years
  - Assayed by serology
  - Reinfections observed 6-105 months after initial infection.
  - Reinfection common after 12 months

#### **Severe Acute Respiratory Syndrome-2002-4**

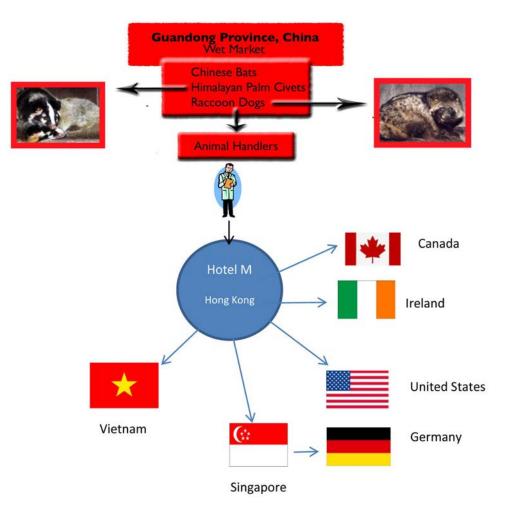



| Cases     | 8437             |
|-----------|------------------|
| Deaths    | 813              |
| Countries | 32               |
| Cost      | US\$20 + Billion |

#### **Severe Acute Respiratory Syndrome**

- Emerged in late 2002 in Guandong Province, China.
- Wet markets critical in spread to humans.
- Caused by novel coronavirus.
- Animal reservoir found to be bat population in China.
- SARS-like coronaviruses crossed species many times in wet markets.

#### **SARS-CoV** interspecies transmission (2002)




Images from various internet sites

### SARS in East Asia

- Likely transmitted to animal handlers several times since ~35% sero-positivity rate in handlers.
- Worldwide epidemic occurred as result of single set of transmission events, involving a physician in Guangzhou who traveled to Hong Kong.

#### **SARS Epidemiology in Hong Kong**



#### Where the SARS epidemic began



## Room 911 is missing



#### Middle East Respiratory Syndrome

- First documented case was in April 2012.
- Total number of cases: ~2580 (June 2021); 886 deaths (34.4% mortality); majority male; median age ~49 (9m-94y).
  - About 1 case/day since July 2012. 14 cases between Jan 1-November 1, 2021 nearly all in Saudi Arabia
- Infection ranges from asymptomatic to lethal.
- Anti-MERS-CoV antibody response often transitory in mild disease, making epidemiology studies difficult.
  - Increased likelihood of reinfection?
- Human-to-human transmission. <u>However, at least 50% cases</u> now are primary and not from interhuman contact.
- Most severe cases are in patients with co-morbidities, including diabetes, chronic lung disease, renal failure, immunocompromised state etc.

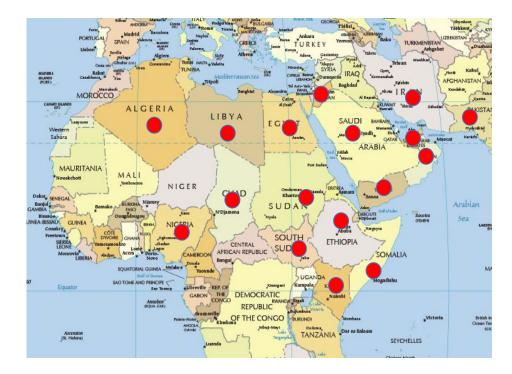
#### **MERS-CoV** interspecies transmission (2012)



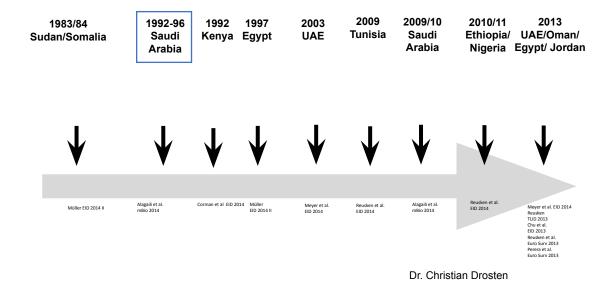
Neoromicia capensis






Mostly in Arabian peninsula

Camels are a reservoir for MERS-CoV






#### MERS is a camel disease Why is there no human MERS in Africa?

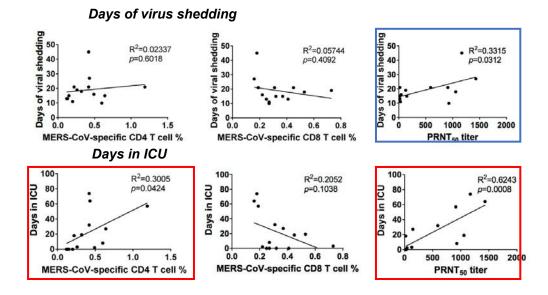


# Antibodies in dromedaries for at least 30 years



#### Why did MERS-CoV cross-species only in 2012 and only in the Arabian Peninsula?

#### Antibody responses in MERS patients


- Neutralizing antibodies critical for protection against rechallenge.
  - Role of mucosal antibody not known but likely important
- Epidemiological studies rely on MERS-CoV antibody measurements.
- In SARS patients, antibody responses were relatively short-lived (not detectable after 6 years).
  - Low levels of SARS-CoV antibody titers persist for 12 years.
  - However, with our Chinese collaborators, we have detected virus-specific neutralizing antibody in 16/18 SARS survivors at 15 years.

#### **MERS-CoV** antibody responses wane rapidly

| Patient<br>no. |               | Clinical<br>presentation |         |     |               |      |                                    |      |         |                      |  |
|----------------|---------------|--------------------------|---------|-----|---------------|------|------------------------------------|------|---------|----------------------|--|
|                |               |                          | PCR, C, |     | Serolog<br>mo |      | Serology at 10<br>mo               |      |         | Serology at 18<br>mo |  |
|                | Age,<br>y/sex |                          | NP S    | BAL | ELISA†        | IFA‡ | ELISA†                             | IFA‡ | ELISA†  | IFA‡                 |  |
| 1              | 49/M          | Severe pneumonia         | 28      | 26  | + (3.17)      | +    | + (2.99)                           | +    | + (3.3) | +                    |  |
| 2              | 33/F          | Severe pneumonia         | 31      | 26  | + (2.7)       | +    | + (2.09)                           | +    | + (2.9) | +                    |  |
| 3              | 54/F          | Pneum onia               | 34      | ND  | + (2.91)      | +    | + (1.9)                            | +    | ND      | ND                   |  |
| 4              | 40/M          | Pneum onia               | 32      | ND  | + (1.29)      | +    | - (0.65)                           | -    | ND      | ND                   |  |
| 5              | 37/M          | Pneum onia               | 35      | ND  | + (3.2)       | +    | + (1.2)                            | -    | ND      | ND                   |  |
| 6              | 36/M          | URTI                     | 32      | ND  | - (0.07)      | -    | - (0.07)                           | -    | ND      | ND                   |  |
| 7              | 27/F          | Asymptomatic             | 33      | ND  | - (0.046)     | -    | Alshukairi et al, EID, 06/2006.04) | -    | ND      | ND                   |  |
| 8              | 28/F          | Asymptomatic             | 32      | ND  | - (0.12)      | -    | - (0.06)                           | -    | ND      | ND                   |  |
| 9              | 35/M          | Asymptomatic             | 33      | ND  | - (0.07)      | -    | - (0.04)                           | -    | ND      | 'nD                  |  |
|                |               |                          |         |     |               |      |                                    |      |         |                      |  |

\*+, positive; -, negative; BAL, broncholaveolar lavage; Ct, cycle threshold; IFA, indirect-immunof horescence assay; MERS-CoV, Middle East respiratory syndrome coronavirus; ND, not done; NPS, nasopharyngeal swab; URTI, upper respiratory tract infection. †ELISA for MERS-CoV S gene antibody; positive defined as a value >1.1, negative as <0.8, and borderline as between 0.8 and 1.1. ‡IFA for MERS-CoV IgG; endpoint titers not done.

#### Relationship between T cell and PRNT<sub>50</sub> responses and duration of viral shedding and length of ICU stay



### **T cell responses in MERS patients**

- T cell responses detected in all MERS survivors, even in those with low or undetectable antibody titers.
- Length of ICU stay correlates with antibody and CD4 T cell response.
- Robust CD8 T cell responses correlate with fewer days in ICU.
- In general, the more severe the illness, the more robust and durable the virus-specific antibody and T cell responses are.
- <u>Implications</u>: Results suggest that we are missing some MERS cases in prevalence studies.

#### Results from three Phase I MERS vaccine studies have been published (ChAd, DNA, Vaccinia virus Ankara)

- Oxford study-ChAdOx1 MERS
- 3 doses tested
- Mild-moderate adverse events.
- 92% ELISA positive at 56 days; 68% positive at one year
- High dose-4/9 developed neutralizing titers (MERS-CoV) at 28 days.
  - Pseudovirus NT assay-79%
- T cell assays-all responded and virus-specific T cells could be detected by 28 days in all recipients.
- T cell response persisted until 1 year.
- Suggests that vaccination could be protective for at least one year.

# The Present: What have we learned about SARS-CoV-2 that is not new (same as other CoV)?

- CoV readily cross species
- CoV cause disease of variable severity (asymptomatic to death)
- Control of the infection requires coordination of all parts of the immune system (innate and adaptive; memory responses).
- CoV can be controlled by robust neutralizing antibody response
- Host immune responses cause most of the disease manifestations.
- SARS-CoV-2 is most severe in aged individuals and people with co-morbidities-obesity, diabetes, heart disease, pulmonary disease, etc.

# The Present: What have we learned about SARS-CoV-2 that is new (not known from other CoV infections)?

- 1. SARS-CoV-2 is a respiratory tract pathogen with little evidence of virus anywhere else (except the gastrointestinal tract) on autopsy.
  - However, many organs are affected in some survivors (brain, kidney, heart, pancreas).
  - How is disease occurring in these organs?
- 2. Some of these questions can be addressed using animal models.
  - Hamsters, nonhuman primates, minks, cats, dogs, deer are all infectable
- 3. 80% of deer in Iowa (USA) showed evidence of viral RNA in lymph nodes!
  - 36% of deer in Ohio study were positive for virus.
- 4. SARS-CoV-2 is very promiscuous. Most CoV tend to infect single species or group of related species. Bovine CoV, which is similar to HCoV-OC43, is exception.

#### The Present: What have we learned about SARS-CoV-2 that is new (not known from other CoV infections)? #2

- 5. Goal of virus is to be more transmissible and become dominant in virus population. Virus readily mutates to achieve this goal, even though it encodes proofreading activity
- 6. Factors that enhance transmission include virus intrinsic factors, such as binding to ACE2, as well as others that are not understood.
- 7. Immune evasion may matter increasingly, as most people are vaccinated or naturally infected.
  - Beta variant is immune evasive but never become dominant. Beta variant was detected at times when numbers of immune individuals were low.
  - Omicron variant is immune evasive. However, many of the key mutations were observed in mouse-adapted virus (we reported on BioRxiv in April 2021), so these mutations arose in the absence of immune pressure.

#### The Present: What have we learned about SARS-CoV-2 that is new (not known from other CoV infections)? #3

- 8. Vaccines are very effective, at least in the short term, and can be readily developed using new (mRNA) technologies.
- 9. For first time, oral anti-viral therapies with activity against a broad array of CoV have been developed.
  - Anti-viral therapies must be delivered early during infection to be efficacious.
- 10. Cocktails of anti-spike antibodies are also effective in preventing disease progression but are also prone to immune escape as virus mutates.
- 11. Anti-viral antibody responses to vaccines and natural infection are quite variable. Boosting increases responses to virus variants.
- 12. Antibody responses waning and waning of vaccine efficacy are more consistent with mucosal rather than systemic infection (where immune responses are expected to be long-lived).
- 13. As pandemic recedes, diagnosing and treating long term effects of COVID-19 (Long COVID-19) will be paramount.



Vero cells infected with SARS-CoV-2

Prof. John Nicholls, HKU