Pandemic epidemiology, public health and modeling

Ben Cowling

WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong

Updated WHO guidelines on NPIs (October 2019)

Non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza

"This document provides recommendations for the use of non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza. The recommendations are based on review of existing guidance documents and the latest scientific evidences that were gathered through a series of systematic literature reviews on the effectiveness of non-pharmaceutical public health measures. The findings of the systematic reviews are summarized in the Annex: report of systematic literature reviews."

Non-pharmaceutical public health measures included

Quality of evidence

COVID-19 in Hong Kong

13,626 confirmed cases to date (1.5 per 1000 persons)

Clustering of COVID-19 infections (Jan-Apr)

Serial interval and offspring distribution (Jan-Apr)

b

19\% of cases responsible for 80% of transmission events (overdispersion parameter $k=0.33$)

COVID vaccination in Hong Kong

COVID-19 control strategy in Hong Kong

"Dynamic Zero Covid"
While daily cases at zero - ban on visitors, returning residents need to quarantine (mostly 21 days, had been 14 and briefly 7) - but loopholes exist

While daily cases >0 (community spread) - isolate, trace+quarantine, moderate social distancing

How could it be done perfectly?

Stay-at-zero phase:
needs large purpose-built on-arrival quarantine facility with resident staff, could also be used for aircrew and airport/port workers

Douglas et al. 2021 Emerg Infect Dis

How could it be done perfectly?

Get-back-to-zero phase: need infrastructure + lab capacity for repeated mass testing, isolation and quarantine outside the home, and preferably also for a lockdown ("pause button")

* Aided in mainland China by "HealthCode"

Chinese city of Tianjin to test 14 million people after Covid outbreak

The port near Beijing began mass testing after 20 children and
adults tested positive, including at least two with Omicron

- People line up for Covid testing in the Chinese port city of Tianjin, which is testing its population of 14 million. Photograph: Reuters

Tianjin, a major Chinese port city near the capital Beijing, has begun masstesting its 14 million residents after a cluster of 20 children and adults tested positive for Covid-19, including at least two with the Omicron variant.

Strategies pros / cons (not complete list)

	Advantages?	Disadvantages?
"ZeroCovid" (e.g. Hong Kong)	Minimise health impact of COVID- 19 including serious cases, deaths, and cases of long COVID Hope for quarantine-free travel to/from mainland China (travel bubble)	Economic and social costs of public health measures and travel restrictions
"Return to normal" (e.g. Singapore)	Can gradually relax the COVID measures such as on-arrival quarantines, social distancing, face masks etc	COVID will have health impact even in a highly vaccinated population
Would not be able to open boundary with mainland China until they also return to normal		

SARS-CoV-2 antibody levels after vaccination

Results from cohort studies in HK

BNT162b2 as third dose in S+S recipients

B

Substantial improvements in antibody titers after third dose of mRNA vaccine (average 6 months after second dose of Sinovac)

C

D

F

Omicron transmission dynamics different?

2020-21, very few clusters in apartment buildings, with intense surveillance (more than 1000 compulsory testing notices)

Published: 19:33, January 22, 2022 | Updated: 21:02, January 22, 2022
2nd Kwai Chung block in 5-day lockdown as Omicron spreads

By Shadow Li \& Chen Shuman

Police officers in protective gear guard at the lockdown area in Kwai Chung Estate, in Hong Kong, Jan 22, 2022. (KIN CHEUNG/AP

Kwai Chung Estate update as of 2pm:
334 confirmed and preliminary positive (+58)
Yat Kwai: 229 (+45 cases, +6 units)
Ying Kwai: 71 (+8/+2)
Nga Kwai: +2 new cases
Yuk Kwai: +1 unit (3 units total)

Value of continuously assessing transmission dynamics

Monitoring key epidemiological parameters of SARS-CoV-2 transmission

To the Editor - Control of the SARS-CoV-2 pandemic requires targeted interventions, which in turn require precise estimates of quantities that describe transmission. Per-capita transmission rates are influenced by four quantities: (1) the latent period (time from infection to becoming infectious); (2) individual variability in infectiousness (defined by variation in intrinsic transmissibility and contact rate); (3) the incubation period (time from infection to symptom onset); and (4) the serial interval (time between symptom onset of an infector and an infected) (Fig. 1).

Exact knowledge of these four quantities contributes to our ability to control an outbreak ${ }^{1}$ but they can vary depending on disease-mitigating interventions ${ }^{2}$ and population structure, as well as the inherent properties of the SARS-CoV-2 variant ${ }^{3,4}$. Inaccurate estimates of the four quantities can lead to incorrect estimation of the time-varying reproduction number $\left(R_{t}\right)\left(\right.$ ref. $\left.{ }^{5}\right)$ and the role or effectiveness of interventions such as testing, isolation and contact tracing on transmission.

Fig. 1 | Epidemiological parameters of SARS-CoV-2 transmission. Four quantities that affect SARS-CoV-2 transmission are shown.

As we progress to an even more complicated landscape of SARS-CoV-2 transmission, affected by varying levels of immunity, vaccination and SARS-CoV-2 variants of concern (VOCs), we argue that coordinated studies are needed to continually monitor for changes in transmission behavior.

What's next? Short term predictions

- COVID DATA TRACKER
National Forecasts

What's next? Longer term?

WHAT HAPPENS NEXT?

To predict how COVID-19 might come and go in temperate regions such as North America and Europe, researchers have modelled the influence of factors including how long immunity to the coronavirus might last, the role of seasons and whether other coronavirus infections might give some immunity to it.

If immunity lasts $\mathbf{~} \mathbf{4 0}$ weeks annual winter outbreaks

If immunity lasts $\mathbf{\sim} 100$ weeks: outbreaks every other year

If other coronaviruses give cross-immunity: apparent elimination, late resurgence

Lessons learned / questions

COVID-19 probably at the highest level of influenza pandemic severity scale?

Border closures not as infeasible as had been thought?

* Should now be a lot of valuable data on work-at-home policies?
" "Lockdowns" / "stay-at-home orders" not even considered as an NPI in our review
* Perhaps there will be more enthusiasm to use NPIs for severe seasonal influenza epidemics, given the experience with COVID-19?

Final comments

Dynamic Zero Covid a valuable short-term strategy to buy time for development of vaccines and antivirals. Costs may exceed benefits in the longer term?

How to measure population immunity? (vs infection, vs hospitalization)

* Optimal vaccination approaches $-3^{\text {rd }}$ doses, $4^{\text {th }}$ doses etc.
* Timing, strain composition, any inference from influenza vaccination data?

What's next after Omicron ??

