

High-dose influenza vaccine

Dr Christian Felter, Head of Medical ANZ *Adult Vaccination Forum 29/06/2017*

Outline

High-dose influenza vaccine (HD)

Background

- Clinical development & registration milestones
- Vaccine characteristics
- Clinical data
 - Two randomised controlled trials
 - Two large-scaled cohort studies by US CDC, FDA & CMS
- Cost effectiveness
- Summary

Abbreviations: CDC=Centers for Disease Control & Prevention; FDA=Food & Drug Administration; CMS=Center of Medicare & Medicaid Services;

Product characteristics

• For 65+

4x (60 mcg) of hemagglutinin in standard dose vaccine

Single 0.5-mL dose; intramuscular

- Trivalent formulation
 - Three strains: Influenza A/H3N2, A/H1N1 & one B lineage
 - Quadrivalent (incl. a second B lineage) under development

Reference: Fluzone High-Dose vaccine [Prescribing Information]. Swiftwater: Sanofi Pasteur Inc.; 2016.

HD in USA

- Licensed in 2009 under FDA's Accelerated Approval Process to fill the unmet medical need
 - Based on pre-licensure data on safety & enhanced immunogenicity compared to standard dose, trivalent influenza vaccine (SD TIV)
- No safety concern identified from population use for 8 years
 - ~70 million doses distributed since licensure
- Extensively studied in USA/Canada
 - 28 published studies
 - Most studies in 65+; some in younger persons with chronic medical conditions

Level of evidence of clinical studies

Available data on HD

This presentation only reports on evidence of highest levels

- RCTs
- Large cohort studies (>2 million participants)

Abbreviations: RCT=randomised controlled trial

Reference: Higgins et al. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0;

Therapeutic Goods Administration (TGA). Evidence guidelines. 2014

Pivotal study (FIM12)

Post-licensure commitment study in 65+

Study endpoints

- Lab-confirmed influenza (primary)
- Serious events possibly related to influenza

. . .

Double-blinded RCT^{1,2}

- 31,989 participants from 126 sites in USA & Canada
 - Mean age = 73
 - Two thirds had ≥1 chronic medical condition
- 2011-12 & 2012-13 seasons*
- 1:1 ratio for HD & SD TIV

Safety surveillance (6-8 months post vaccination)

 Serious adverse events (SAEs) leading to death, hospitalisation, and/or disability, regardless of causality

1. DiazGranados et al. N Engl J Med 2014;371:635-45; 2. DiazGranados et al. Vaccine 2015;33:4988-93

^{*} A/H3N2 predominated in both seasons References:

Relative efficacy of HD to SD TIV

By study years, influenza types, & similarity to vaccine strains

^a Laboratory-confirmed influenza caused by any viral type or subtype (regardless of similarity) associated with a protocol-defined influenza-like illness. b Type A & B combined, similar to the vaccine strains by ferret antisera or genomic sequencing data.

Relative effectiveness of HD to SD TIV

Secondary endpoint: serious events possibly related to influenza

^{*} The % pneumococcal vaccination was similar in both study groups. Therefore, HD effect on pneumonia was not due to differences of pneumococcal vaccination between groups.

Fewer SAEs observed in HD group than SD TIV group

Relative risk of SAE: 0.92 (95% CI 0.80-0.99)

	HD Vaccine (N=15,992)		SD TIV (N=15,991)	
(Number of participants)	n	%	n	%
SAE	1323	8.27	1442	9.02
Related SAE	3 ^b	0.02	0	0.00
Adverse Event of Special Interest (AESI)	3°	0.02	6 ^d	0.04
SAE leading to study discontinuation	99	0.62	103	0.64
Death (any cause)	83	0.52	84	0.53

Two large-scaled cohort studies in USA for 65+

Both were jointly conducted by US CDC, FDA & CMS

Comparative effectiveness of high-dose versus standarddose influenza vaccines in US residents aged 65 years and older from 2012 to 2013 using Medicare data: a retrospective cohort analysis

Hector S Izurieta*, Nicole Thadani*, David K Shay, Yun Lu, Aaron Maurer, Ivo M Foppa, Riley Franks, Douglas Pratt, Richard A Forshee, Thomas MaCurdy, Chris Worrall, Andrew E Howery, Jeffrey Kelman

Summary

SANOFI PASTEUR

Background A high-dose trivalent inactivated influenza vaccine was licensed in 2009 by the US Food and Drug Lancet Infect Dis 2015; Administration (FDA) on the basis of serological criteria. We sought to establish whether high-dose inactivated influenza vaccine was more effective for prevention of influenza-related visits and hospital admissions in US Medicare beneficiaries than was standard-dose inactivated influenza vaccine.

15:293-300

Published Online February 9, 2015 http://dx.doi.org/10.1016/

The Journal of Infectious Diseases

MAJOR ARTICLE

Comparative Effectiveness of High-Dose Versus Standard-Dose Influenza Vaccines Among US Medicare Beneficiaries in Preventing Postinfluenza Deaths During 2012–2013 and 2013–2014

David K. Shay, 1 Yoganand Chillarige, 2 Jeffrey Kelman, 3 Richard A. Forshee, 4 Ivo M. Foppa, 1.5 Michael Wernecke, 2 Yun Lu, 4 Jill M. Ferdinands, 1 Ariun Ivengar.² Alicia M. Frv.¹ Chris Worrall.³ and Hector S. Izurieta^{4,6}

Two large-scaled cohort studies in USA for 65+

Both were jointly conducted by US CDC, FDA & CMS

	Izurieta et al. 2015	Shay et al. 2017	
Study design	Retrospective cohort studies using administrative data (Medicare database in USA)		
Seasons*	2012-13	2012-13 & 2013-14	
N of vaccinees (% HD)	2.5 million (37%)	6.1 million (42%)	
Age	Mean age: 75-76	50-52% aged ≥65	
% ≥1 medical condition	59-60%	62-65%	
Endpoints	a. Probable influenza[†]b. Influenza hospitalisation	Post-influenza death [‡]	

[‡] Death within 30 days following an inpatient or emergency department encounter coded as influenza (ICD-9) References: Izurieta et al. Lancet Infect Dis 2015;15:293-300; Shay et al. J Infect Dis 2017;215:510-7

^{*} A/H3N2 predominated 2012-13; A/H1N1 predominated in 2013-14

[†] Defined by receipt of a rapid influenza test followed by dispensing of neuraminidase inhibitor oseltamivir

Relative effectiveness demonstrated (HD vs SD TIV)

Magnitude consistent with FIM12

	Izurieta et al. 2015	Shay et al. 2017		
Study design	Retrospective cohort studies using administrative data (Medicare database in USA)			
Seasons*	2012-13	2012-13 & 2013-14		
N of vaccinees (% HD)	2.5 million (37%)	6.1 million (42%)		
Age	Mean age: 75-76	50-52% aged ≥65		
% ≥1 medical condition	59-60%	62-65%		
Endpoints	 a. Probable influenza[†] b. Influenza hospitalisation 	Post-influenza death [‡]		
Relative effectiveness	a. 22% (95% CI 15-29%) b. 22% (95% CI 16-27%)	24% (95% CI 0.6-42%)		

^{*} A/H3N2 predominated 2012-13; A/H1N1 predominated in 2013-14

[‡] Death within 30 days following an inpatient or emergency department encounter coded as influenza (ICD-9) References: Izurieta et al. Lancet Infect Dis 2015;15:293-300; Shay et al. J Infect Dis 2017;215:510-7

[†] Defined by receipt of a rapid influenza test followed by dispensing of neuraminidase inhibitor oseltamivir

Cost saving in USA (similar results for Canada)

Ad-hoc cost-effectiveness analyses using trial data of FIM12

Item/Outcome		HD	SD TIV	Difference
Study Vaccine		\$31.8	\$12.1	\$19.8
Mean per-participant cost in FIM12	Hospitalisation	\$1,320.5	\$1,456.9	-\$136.3
	Direct medical costs	\$1,376.7	\$1,492.6	-\$115.9
	Direct & indirect costs	\$1,506.5	\$1,634.5	-\$128.0

HD is a less costly & more effective alternative to SD TIV in USA, driven by a reduction in the number of hospital admissions

Reference: Chit et al. Lancet Infect Dis 2015; 15: 1459-66

Summary

High-dose influenza vaccine

- Improved clinical protection demonstrated in robust studies
 - Point estimates of relative benefits: 22% to 24%

Well-established safety profile

Cost effective in US & Canadian settings

